Comparison between Genetic Algorithms with
Exaptation and Case Injected Genetic
Algorithm in dynamic job shop problems

Luis Torres-Trevifio

Corporacién Mexicana de Investigacién en Materiales
Oceania 190, Fracc. Saltillo 400
Phone (844)-411-32-00
Saltillo, Coahuila, Mexico.
ltorres@comimsa.com.mx

Abstract. It is propose new evolutionary algorithms with exaptive prop-
erties to tackle dynamic job shop problems. Exaptation is a new theory
with two implicit procedures of retention and reuse of old solutions. The
retention of a solution involves some kind of memory and the reuse of a
solution implies the adaptation of the solution to the new problem. The
first algorithm proposed applies seeding techniques to reuse a solution
and the second algorithm proposed uses memory with seeding techniques
to retain and reuse solutions respectively. Both algorithms are compared
with a simple genetic algorithm with random initialization (RIGA) and
the Case Injected Genetic Algorithm (CIGAR). The test include two se-
lection mechanism, the tournament selection of size two and the selection
proposed by Eshelman.

Track category: Evolutionary Scheduling and Routing

1 Introduction

In recent years the optimization of dynamic problems has become a growing
field of research. The real-world problems are not static, they exist in a dynamic
environment and it is necessary to modify the current solution when a change
is detected. It is necessary evolutionary algorithms that do not re-start in every
change; these algorithms must take advantage of the population information to
obtain a valid solution in a short time. It is expected a similar solution when
there are a minimum change of the problems and a dissimilar solution when
there are an important change of the problem.

Some examples of dynamic problems are job shop problems where there are
changes in due time, changes in the number of machines, processing times, etc.,
and these changes imply a re-schedule in the job shop. Learning in dynamic
environments is a desirable quality for mobile robots. Navigation represents a
simultaneous problem of path planning and movement to the goal along the
path. Finally consider an company where in some periods there is high demand

© A. Gelbukh, A. Kuri (Eds.) Received { 5/06/07
Advances in Artificial Intelligence and Applications Accep{ea’ 31/08/07
Research in Computer Science 32, 2007, pp. 249-257 Final version 30/09/07

250 Luis Torres Treviiio

of products and in another periods there is low demand. Usually it is necessary
an optimization algorithm to manage and control sources efficiently with this
dynamic demand. All of these dynamic problems can be modeled with variables,
the optimization function and a set of constrains. Every one of them can changes
through time [1). Many authors have suggested some extension in the simple
genetic algorithm to tackle these dynamic problems. Branke has suggested the

following categories to group the algorithms proposed (2, 3]:

— Evolutionary algorithms that detect every change in the environment. If it is
detected some change, then new individuals are injected into the population

to increase diversity. _ ‘
— Evolutionary algorithms which have an implicit memory. These algorithms

use double or more complex representations (diploid, haploids) [4,5]. In a

given moment just one representation is active.
~ Evolutionary algorithms which have an explicit memory to store useful in-

formation of the past and it is recalled when the dynamic problem returns

to a similar situation presented in the past [6,7).
— Evolutionary algorithms which avoid every time the convergence. Genetic

algorithms with sharing and random immigrants are examples of these kinds

of algorithms.
— Evolutionary algorithms that use a multiple subpopulations to search the

optimum solution or to search a new one.

In the following sections it will be presented a comparison of two new evolu-
tionary algorithms inspired in exaptation, versus the simple genetic algorithms
with random initialization (RIGA), and the Case Injected Genetic Algorithm
(CIGAR) proposed by Sushil J. Louis to solve dynamic job shop problems. Sec-
tion II reviews the exaptation theory. In section III it is proposed two genetic
algorithms inspired in exaptation theory. Section IV reports some experiments
and results of the comparisons. Finally, the conclusions and future work will be

give in the last section.

2 Exaptation

Gould and Vrba [8, 9] proposed the term exaptation, which refers to a trait that
current provides fitness, but originally arose for some other reason. Every entity
(species) tries to survive in a continuous non-static environment. The entity
has traits which lets survive in the environment. Some traits are useful because
provide high fitness but another ones do not provide fitness, they are usually
useless. Some traits may have evolved in one context of the environment but
later, such a trait may be co-opted for use in a different role. In other words,
the exaptation is a change in the function of an old trait to solve a new problem
similar or very different to the original one.

It is possible to describe three procedures in exaptation. First, when there
is a change in the environment it is detected a set of possible traits with high
fitness. Second, it is possible to reuse useful traits with high fitness and adapt

Comparison between Genetic Algorithms with Exaptation and Case Injected Genetic... 251

them to the new environment. The third procedure retains a useful trait for
future references; however, the useless traits do not disappear completely, they
are stored as redundant or useless structures.

The initial population of a genetic algorithm is random. When the simple
genetic algorithm (SGA) solves a problem, it takes several cycles to get an op-
timum or an individual with high fitness. In the last generation the population
has individuals that are very similar between them, it means, there are a low
diversity. If there is a change of the environment (i.e. change the objective func-
tion) and some individuals are useless maybe some of them have useful traits.
These traits are components of the phenotype so there are some genes to rep-
resent them. If the SGA runs again with a changed in the environment and the
same population (without a random initialization), the useful traits may arise
and they can let to get a new optimum quickly. In the SGA it is possible to reuse
the last population if the function does not change too much. If the change is
important then the reuse of the last population can be useless. It is necessary to
modify the SGA in order to get some features of exaptation and it can be used
to solve dynamic problems. '

3 Genetic algorithms with exaptation and CIGAR

The first algorithm proposed is the SGA with seeding techniques; this algorithm
is inspired in exaptation because it is reused some structures when the algorithm
detects any change in the optimization function. If this change is detected then
some variations or neighborhoods of the best solution found are injected into the
actual population. The variations or neighborhoods replace a percent of the total
population. It could be that some components (genes) of the best individual can
be reused to improve the fitness in the new optimization function. The neighbor-
hoods of the solution can give the appropriate solution if the problem changes
slightly. The variations (mutations) of the solution can give a key to improve the
fitness if the problem changes abruptly. This algorithm can be classified as an
approach that detect a change and it is applied an injection.

The second algorithm is inspired in exaptation too and it is implemented
from the point of view of learning by analogy; this learning mechanism has a
memory of useful solutions of the past, a storing procedure of solutions, a search
mechanism and a modification procedure. The second algorithm applies similar
procedures: A recognition procedure where it is used the evaluation of the best
individual to be compared again the best evaluation found in the past. If there is
a degradation of the past solution then there is a change in the objective function.
Storing procedure saves the best individual found into the memory. This avoids
to store the same individual in the memory two times. The procedure is simple;
first, it locates the most similar individual of the memory to the best individual
found and if the best individual found has better evaluation than the individual
of the memory then the best individual is stored into the memory. In other case,
there is not change in the memory. This procedure tries to apply the exaptive

252 Luis Torres Treviiio

property of retention of solutions. The modification procedure is based in seeding
techniques [10]. : :

The algorithms implemented are the Randomly Injected Genetic Algorithm
(RIGA), the Case Injected Genetic Algorithm (CIGAR), the SGA with seeding
(SGAS) and the SGA with seeding and memory (SGASM). All the algorithms
reuse the last population where it is initialized just at the beginning of the
run. The RIGA is a simple genetic algorithm with random initialization and
this is shown below. P is the population, Fg retains the evaluation value of
every individual in the population. I is an auxiliary variable and it retains the
best individual of the population per generation. The evaluation value of the
Individual I is saved in e.

[Simple Genetic Algorithms ' B
1) P +Random initialization
2) Fg «+ Evaluation(P)
3) Get the best individual I and its evaluation e from Fg
4) P « Selection(P, Fg)
) P + Reproduction(P) (crossover and mutation)
) If end condition is not satisfied, then go to step (2)
) End

The CIGAR proposed by Sushil Louis consists of a case based reasoning sys-
tem (CBRS) with a genetic algorithm. The components of each case are: the
best solution, the number of generation in which it was stored, the value of
evaluation, and the description of the problem to detect similarities. CBRS can
place solutions of examples to have some reference in the search. The system
initiates in random form and solutions are injected when some cases are simi-
lar to the new problem. In each certain number of generations, solutions of the
CBRS are injected into the population of the genetic algorithm when the prob-
lem is similar to one already solved. The system looks for best the individuals of
the population and it is stored in the memory of the CBRS, replacing the most
similar solution but with smaller value of evaluation. The process is repeated
in certain number of generations; for example, solutions in generations 1225,
50 and 100 can be stored and be injected. There are four forms in CIGAR to
inject solutions, the first form consists of injecting solutions that are similar to
the best-found solution; the second form consists of injecting solutions that are
similar to the worse found solution. In the third form, solutions of CBRS are
injected and chose according to a probability factor that is inversely propor-
tional to the Hamming distance between the solution stored in the CBRS and
the best solution found in the population. In the fourth form, solutions of the
reasoning system are injected according to a probability factor that is directly
proportional to the Hamming distance between the cases of the reasoning system
and a solution of the population. In all the cases the injected solutions replace
the worse individuals of the population. Lately the author has used his system
CIGAR without the mechanism to detect similarities because it implies a high
cost or a difficulty to determine a metric for certain problem. In was replaced
by the fitness evaluation [12-14].

)
6
7

Comparison between Genetic Algorithms with Exaptation and Case Injected Genetic... 253

The CIGAR algorithm is shown below. In these experiments was used the
fitness value as a metric to detect similarities and it is injected the solutions of
the memory I (extracted) that are similar to the best-found solution of the
population [16-18]

| Cased Injected Genetic Algorithm o

1) P «+ Random initialization

2) M + Random initialization or empty memory

3) Fg «+ Evaluation(P)

4) Get the best individual I and its evaluation e from Fg

5) P « Selection(P, Fg)

6) P «+ Reproduction(P) (crossover and mutation)

7) Every 25 generations save the best solution I into
the memory M (case based)

8) Every 25 generations extract the solution I (see text above)
from M and inject it in P

9) If end condition is not satisfied, then go to step (3)

10) End

The genetic algorithm with seeding injects neighbors of the best individual
I when it detects a change in the objective function.

@netz’c algorithm with seeding techniques —I
1) P «+ Random initialization

2) Get the best past evaluation e,

3) FE « Evaluation(P)

4) Get the best individual I and its evaluation value e
from Fg

5) If e < e, then apply seeding of 50% of neighbor
and variations of I in P

6) P « Selection (P, Fg)

7) P <« Reproduction (P) (crossover and mutation)
8) Includes Elitism injecting I in P

9) If end condition is not satisfied, then go to step (2)
10) End

The SGA with memory and seeding has a memory to save the best solution
found. The algorithm uses a SGA with seeding of neighborhoods and variations of
50% (25% each one). The rest is random. The condition to make a seeding is when
the evaluation value of the memory e, is greater than the best past evaluation
value e,. When the memory detects a small evaluation in the individuals of the
memory this is an indication that the function changes and there is an unknown
solution, so it is necessary to find a new one considering only the information of
the memory [11].

254 Luis Torres Trevifio

[Genetic algorithm with memory and seeding techniques J
1) P +— Random initialization
2) M + Random initialization or empty memory
3) Get the best past evaluation value e,
4) FEM < Evaluation(M)
5) Get the best individual Ir, and its evaluation value en
from Feum
6) If em > e, then applies seeding of 50% of
Neighborn and variations of Im in P
7) FE « Evaluation(P)
8) Get the best individual I and its evaluation value e
from Fg
9) P « Selection(P, Fk)
10) P + Reproduction(P) (crossover and mutation)
11) Every k generations saves in memory M the best individual I
12) If end condition is not satisfied, then go to step (3)
13) End

Tt is important to describe the injection mechanism of the genetic algorithms
with exaptation. The procedure requires the injection of variations and neigh-
borhoods that represent sequence solution. The generation of neighborhoods use
a method called one step look-back interchange [19]. It is necessary a sequence
of operations and the list of machines where the operations were allocated. The
method first locate a job k that was assigned in machine m (called position p;)
and locate another operation which has the same machine m (called position
p2). In the next step it is interchanged the operations between position pl and
p2 so we have a new sequence. The solutions variation is a simpler procedure
where it is selecting two random positions of operations and it is interchanged
the operations among them.

4 Experimentation and results

This experiment is inspired in Sushil Louis works [15]. The problem is to mini-
mize the makespan; that means, the total elapsed time between the beginning of
the first task and the completion of the last task. In the problem of dynamic JSP
there are 10 jobs and 10 machines; each job comprises a set of operations or task.
The operations must each be done in different machines in a given job-dependent
order.

A machine does not process two different jobs at once and different operations
of the same job are not simultaneously being processed on different machines.
The sequence of operations or tasks represents a chromosome of size 100 (10 jobs
Ecz 01]0 operations per job). The enconding follow the scheme proposed by Fang

It is generated with a uniform random initialization 10 jobs with 10 opera-
tions. Each job has a due time between 20 and 500; the processing time of every

Comparison between Genetic Algorithms with Exaptation and Case Injected Genetic... 255

job is between 4 and 12 time units and the job-dependent order has a uniform
random initialization. This is called the basic problem.

It is generated 50 problems picking randomly the processing time of the op-
erations (40% of the total operations) from the basic problem and the processing
time has a random modification adding or resting up to 4 units of time.

For the experiment all the evolutionary algorithms has a crossover probability
of 0.9 and mutation rate of 0.0725, it is used a swap mutation and a greedy
crossover [21], a total population size of 100 individuals. The CIGAR memory
has the capacity to save 50 solutions (cases) and the SGASM memory has the
capacity to store 10 solutions. It is used a selection tournament of size 2. Every
generation involves 100 evaluations per generation. All the algorithms solve the
same problems. It is reported the best solution found per algorithm per problem.

It is used two selection procedures. The selection procedure proposed by
Eshelman [22] was used by Sushil Louis in his CIGAR system. Every plot illus-
trates the performance to minimize the total cost of makespan in every problem
through time. The figure 1 shows all the algorithms for the dynamic JSP problem
with selection proposed by Eshelman. The plot suggests a better performance of
the genetic algorithms with seeding and memory.

2000 T T T T | T T
1800
1600
1400 -4\
1200 .

10001

8001

600

400 1 1 1 Jt T =1 Il L 1

Fig. 1. Performance of several approaches in every problem using selection proposed
by Eshelman.

It was changed the selection procedure and it is used the tournament selection
of size two in all algorithms. The figure 2 shows a better performance of the

genetic algorithms that use exaptation. :
RIGA has a poor performance because do not use the last information and

take the every problem as a new one.

256 Luis Torres Treviiio

1800 T T T T T T

1600+ 4
' /
1400 - 3 \ 1

1200

1000 -\

800} e 1
|
600} ! \ 7\/
RIGA ,
CIGAR
SGAS]
4001 SGASM
1 1 1) 1 1 1
20 25 30 35 40 45 50

Minimum Cost

®"+0+

L 1 L
2000 5 10 15

Problems

Fig. 2. Performance of several approaches in every problem using tournament selection
of size 2.

5 Conclusion

In this paper it is proposed two algorithms inspired in exaptation theory. The
algorithms make intensive use of seeding techniques of the best solution useful
at the moment. Both algorithms were tested with other algorithms in a simple
dynamic job shop problem. It was implemented other algorithms to make com-
parisons between them. It was shown that the algorithms proposed have better
performance that CIGAR an RIGA.

It is possible to get a better performance in the CIGAR system if it is used
other selection mechanism like tournament selection. In future work there are
two routes, first it is necessary to get a pure exaptive algorithm with retention
and reuse implicit properties. It is necessary to have more controlled seeding
techniques. The second tendency is to find more dynamic problems to test these
algorithms like the problems found in dynamic learning.

References

1. Trojanowski, K. and Michalewicz, Z. Evolutionaiy algorithms for non-stationary
environments. In: Proc. of 8th Workshop: Intelligent Information systems, ICS PAS
Press, (1999) 229-240

2. Branke, J. Evolutionary approaches to dynamic optimization problems; a survey.
In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization
Problems, (1999) 134-37 ;

3. Branke, J. Evolutionary approaches to dynamic optimization problems - Updated
survey. In: GECCO Workshop on Evolutionary Algorithms for Dynamic Optimiza-
tion Problems (2001), 27-30

Comparison between Genetic Algorithms with Exaptation and Case Injected Genetic... 257

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Goldberg, D. Genetic algorithms in search, optimization, and machine learning.

Addinson - Wesley. Pub. Co., Reading MA (1989).

Dasgupta, D. and McGregor, D. Nonstationary function optimization using the
structured genetic algorithm. In: R. Ménner and B. Manderick, editors, Parallel
Problem Solving from Nature, Elsevier Science Publisher (1992) 145-154

Louis, Sushil and Johnson, J.: Robustness of Case-Initialized Genetic Algorithms,
FLAIRS-99, Orlando, FL, AAAI Press, (1999)

Connie Loggia Ramsey and John J. Grefenstette: Case-Based Initialization of Ge-
netic Algorithms. Proc. of the Fifth Int. Conf. on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA. (1993) 84-91.

S. J. Gould and S. Vrba: Exaptation: A missing term in the science of form, Pale-
obiology, volume 8 (1982) 4-15

Stephen Jay Gould: A crucial Tool for an Evolutionary Psychology, Journal of
Social Issues, volume 47, (1991) 43-65

. Torres-Treviiio, L. Sistemas exaptivos: retencién y reutilizacién de conocimiento en

algoritmos evolutivos. Tesis Doctoral. Instituto Tecnolégico de Estudios Superiores
de Monterrey. Campus Monterrey (2004)

. Torres, L. GA with Exaptation: New Algorithms to Tackle Dynamic Problems.

Lecture Notes in Computer Science, 2972, (2004) 746-753

Sushil J. Louis and Judy Johnson: Solving Similar Problems Using Genetic Algo-
rithms and Case-Based Memory, Proceedings of the Seventh International Confer-
ence on Genetic Algorithms, Morgan Kauffman, San Mateo, CA, (1997) 283-290
Sushil J. Louis: Genetic Learning from Experience, Accepted in CEC-03, Cam-
berra, Australia (2003)

Sushil J. Louis and Chris Miles. Playing to learn: Case-injected genetic algorithms
for learning to play compuer games. IEEE Transactions on Evolutionary Compu-
tation, 9(6). 2005

Sushil J. Louis and Zhijie Xu: Genetic algorithms for Open Shop Scheduling and
Re-Scheduling, M. E. Cohen and D. L. Hudson, ISCA 11th Int. Conf. on Computers
and their Applications, Raleigh, NC (1996) 99-102

Sushil J. Louis. Evolutionary learning from experience. Journal of Engineering
Optimization, 26(2), (2004) 237-247 '

Sushil J. Louis and John McDonnell. Learning with case injected genetic algo-
rithms. IEEE Transactions on Evolutionary Computation, 8(4), (2004) 316-328
Sushil J. Louis and Gong Li. Case injected genetic algorithms for traveling salesman
problems. Information Sciences, 122, (2000) 210-225.

Pinedo, Michael Scheduling: Theory, algorithms, and systems, Prentice Hall, En-
glewood Cliffs, NJ, (1995)

H. L. Fang and P. Ross and D. Corne: A promising genetic algorithm approach

' to job shop scheduling, rescheduling, and open shop scheduling problems, Proc. of

the Fifth Int. Conf. on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA.,
(1993) 375-382

G. E. Liepins and M. R. Hilliard and M. Palmer and M. Morrow: Greedy genetics,
In Proceedings of the Second International Conference on Genetic Algorithms,
Lawrence Erlbaum, (1987) 90-99

L. J. Eshelman: The CHC adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination, Foundations of genetic
algorithms 1, (1991) 265-283.

